6 Apresentação e discussão dos resultados

6.1 Modelo utilizado

Conforme visto na revisão bibliográfica, a cinética das reações de redução dos óxidos de ferro, apesar de exaustivamente estudada nos últimos anos, ainda apresenta várias discussões sobre a validade dos diversos modelos desenvolvidos. Mesmo quando se consideram sistemas puros, o estudo cinético é bastante complexo, envolvendo diversas fases (sólidos metálicos, sólidos iônico-covalentes, gases), defeitos cristalinos, difusão em gases e em sólidos, reações de interface, transporte ao longo de capilares (através de difusão e convecção), etc. Mas de qualquer maneira, alguns consensos envolvendo a cinética global da auto-redução existem. Por esta razão, muitos pesquisadores fizeram abordagens mais simples a respeito dos mecanismos de auto-redução dos óxidos de ferro, gerando modelos menos sofísticados, em que as velocidades globais de reação seriam controladas apenas por mecanismos químicos. Um dos modelos mais utilizados ^(29, 30, 41, 45, 52, 57), e que apresenta boas correlações com os dados experimentais, é o modelo da reação contínua, que correlaciona a conversão em função do tempo da reação, de acordo com a seguinte equação:

$$-\ln (1-\chi) = \kappa t$$
 eq. (11)

Por sua simplicidade e boa correlação, este modelo foi usado neste trabalho, visando a obtenção dos parâmetros cinéticos Energia de Ativação (E_0) e fator pré-exponencial (κ_0), para a determinação do valor da constante de taxa de reação (κ), de acordo com a equação de Arrehnius:

$$\kappa = \kappa_0 . \exp(\frac{-E_0}{R.T})$$
 eq. (12)

O desenvolvimento matemático do modelo utilizado, é apresentado no Apêndice III.

6.2 Gradientes térmicos entre a superfície e o núcleo dos briquetes

Figura 13 - Gradientes térmicos entre a superfície e o centro dos briquetes

Foi observado experimentalmente, a existência de gradientes térmicos entre o núcleo e a superfície do briquete. Este fenômeno já foi observado por vários outros autores^(29,41,45,53,54), e deve-se aos seguintes fatores principais: atuação dos óxidos constituintes dos aglomerados como refratários ao fluxo interno de calor, geometria dos aglomerados (superfície de troca e forma), ocorrência de reações endotérmicas no interior dos aglomerados e queda da intensidade de fluxo de calor para os aglomerados por radiação e convecção, em função do aumento da temperatura superfícial dos mesmos.

Das teorias de transferência de calor, sabe-se que sempre que existem duas fontes com temperaturas distintas, um processo natural de troca térmica se inicia, tendendo a diminuir o gradiente de temperatura existente a medida que o processo caminha para o equilíbrio. Além deste fenômeno natural, no caso da auto-redução o gradiente térmico tende a diminuir ainda mais nos estágios finais do processo, influenciado pela diminuição da ocorrência das reações endotérmicas, e pela formação de uma camada de ferro metálico que auxilia na condução térmica.

Incubação térmica

Este gradiente térmico existente nos briquetes, no início da auto-redução, acaba por afetar as energias de ativação aparentes calculadas, pois a amostra ainda está relativamente 'fria' nos primeiros minutos de teste, não garantindo as condições necessárias à ocorrência das reações químicas. Este período inicial em que a amostra mais sofre a influência do gradiente térmico, foi chamado neste trabalho de 'incubação térmica'.

Pelo gráfico da figura 13, nota-se que o núcleo do briquete segue uma tendência bem definida de aumento de temperatura, quando de repente ocorre uma mudança na derivada da curva de aquecimento. Esta mudança é função do início da reação de Boudouard, que por ser altamente endotérmica, diminui a velocidade de aquecimento do briquete a ponto de, para temperaturas mais baixas, dificultar muito o alcance do equilíbrio térmico entre a superfície externa e o núcleo dos aglomerados. Conforme mostrado no gráfico, foram encontradas as seguintes temperaturas no núcleo do briquete, no momento onde se nota o efeito da endotermicidade da reação de Boudouard: $T_{núcleo}$ 882°C para T_{sup} 1300°C, $T_{núcleo}$ 789°C para T_{sup} 1225°C e $T_{núcleo}$ 721°C para T_{sup} 1000°C, onde conclui-se que a temperatura para início da reatividade deste carvão inicia em torno de 750°C.

O intervalo de tempo em que o fenômeno da 'incubação térmica' atuou nos experimentos, foi definido a partir da análise da mesma figura 13 acima, determinando o momento em que o briquete estaria completamente 'encharcado' de calor, de maneira a permitir a ocorrência mais intensa da reação de Boudouard. Pela análise acima, esta reação inicia em cerca de 750°C, então optou-se por escolher a temperatura de 'encharque' como 850°C, onde a geração de gás já seria bem intensa no interior dos aglomerados. Neste sentido, o período de incubação térmica foi definido como: 1000°C e 1150°C – 15 minutos; 1200°C e 1250°C – 10 minutos; 1300°C – 5 minutos. Nota-se que quanto maior a temperatura, menor o tempo necessário para garantir o 'encharcamento' térmico do briquete.

Por fim, optou-se por desconsiderar os pontos experimentais referentes a estes intervalos de tempo, no cálculo da constante de taxa de reação média (κ), visando uma melhor correlação com o modelo teórico proposto, garantindo assim maior precisão aos parâmetros cinéticos calculados. *Ex.: para T: 1150°C, os*

pontos de 3, 5, 7 e 10 minutos foram desconsiderados, e a curva nos gráficos aparece pontilhada para este intervalo.

6.3 Resultados encontrados

As tabelas 3 à 12, mostram os resultados experimentais obtidos. Estes resultados são apresentados nas tabelas da seguinte maneira:

- Tempo tempo do teste em minutos.
- Conversão observada (χ_{obs}) valores de conversão metálica, determinadas por análise química, para cada tempo de teste.
- Constante de taxa (κ) valores das constantes de taxa, calculadas para cada valor de conversão observada (χ), para cada tempo de teste, de acordo com a equação do modelo.
- -ln(1-χ) observado valores de –ln(1-χ), calculados para as conversões observadas, para cada tempo de teste.
- κ_{médio} valor da constante de taxa média, desconsiderando-se os valores de κ durante o período de 'incubação térmica'. Os valores desconsiderados estão mostrados em vermelho nas tabelas 3 à 12.
- Desvio Padrão valor do desvio padrão do cálculo de κ_{médio}, para o intervalo de cálculo utilizado.
- Conversão calculada (χ_{calc}) valores de conversão metálica, calculadas em função do κ_{médio}, para cada tempo de teste.
- -ln(1-χ) calculado valores de –ln(1-χ), calculados para as conversões calculadas, para cada tempo de teste.

6.3.1.1 Atmosfera externa de Nitrogênio (N₂). Vazão: 2,50 I.min⁻¹

t [min]	Conversão observada (χ _{obs})	Constante de Taxa (κ)	-ln(1-χ) observado	Conversão calculada (χ _{calc})	-ln(1-χ) calculado
5	0,00	0,00096	0,00	0,01	0,01
10	0,01	0,00080	0,01	0,03	0,03
20	0,09	0,00470	0,09	0,06	0,06
30	0,06	0,00197	0,06	0,08	0,09
45	0,09	0,00200	0,09	0,12	0,13
	κ _{médio}	0,0029			
	Desvio Padrão	0,0001			

Tabela 3 – Resultados experimentais para T: 1000°C e N₂: 2,5 l.min⁻¹ (SCM-AL)

Tabela 4 – Resultados experimentais para T: 1150°C e N₂: 2,5 l.min⁻¹ (SCM-AL)

t [min]	Conversão observada (χ _{obs})	Constante de Taxa (κ)	-ln(1-χ) observado	Conversão calculada (χ_{calc})	-ln(1-χ) calculado
3	0,04	0,01361	0,04	0,06	0,06
5	0,07	0,01451	0,07	0,09	0,10
7	0,10	0,01505	0,11	0,13	0,13
10	0,10	0,01008	0,10	0,17	0,19
15	0,21	0,01571	0,24	0,25	0,29
20	0,34	0,02055	0,41	0,32	0,38
30	0,45	0,01976	0,59	0,44	0,57
45	0,60	0,02036	0,92	0,58	0,86
L	κ _{médio}	0,0	191		L
	Desvio Padrão	0,00009			

t [min]	Conversão observada (χ _{obs})	Constante de Taxa (κ)	-ln(1-χ) observado	Conversão calculada (χ _{calc})	-ln(1-χ) calculado
3	0,02	0,00689	0,02	0,07	0,07
5	0,05	0,01010	0,05	0,11	0,12
7	0,12	0,01826	0,13	0,15	0,17
10	0,24	0,02768	0,28	0,21	0,24
15	0,31	0,02452	0,37	0,30	0,36
20	0,35	0,02154	0,43	0,38	0,48
30	0,45	0,01993	0,60	0,51	0,71
45	0,68	0,02525	1,14	0,66	1,07
	κ _{médio}	0,0	238		·
	Desvio Padrão	0,0	001		

Tabela 5 – Resultados experimentais para T: 1200°C e N_2 : 2,5 l.min⁻¹ (SCM-AL)

Tabela 6 – Resultados experimentais para T: 1250°C e N₂: 2,5 l.min⁻¹ (SCM-AL)

t [min]	Conversão observada (χ _{obs})	Constante de Taxa (κ)	-ln(1-χ) observado	Conversão calculada (χ _{calc})	-ln(1-χ) calculado
3	0,05	0,01665	0,05	0,13	0,14
5	0,21	0,04746	0,24	0,21	0,24
7	0,25	0,04110	0,29	0,28	0,33
10	0,40	0,05108	0,51	0,38	0,48
15	0,40	0,03453	0,52	0,51	0,71
20	0,60	0,04581	0,92	0,61	0,95
30	0,82	0,05716	1,71	0,76	1,43
45	0,89	0,04905	2,21	0,88	2,14
	κ _{médio}	0,0	475		
	Desvio Padrão	0,0	005		

t [min]	Conversão observada (χ _{obs})	Constante de Taxa (κ)	-ln(1-χ) observado	Conversão calculada (χ _{calc})	-ln(1-χ) calculado
3	0,12	0,04262	0,13	0,20	0,22
5	0,20	0,04463	0,22	0,31	0,37
7	0,30	0,05095	0,36	0,40	0,52
10	0,50	0,06931	0,69	0,52	0,74
15	0,60	0,06109	0,92	0,67	1,11
20	0,90	0,11717	2,34	0,77	1,48
30	0,93	0,08864	2,66	0,89	2,22
45	0,98	0,08724	3,93	0,96	3,34
	κ _{médio}	0,0	741		·
	Desvio Padrão	0,0013			

Tabela 7 – Resultados experimentais para T: 1300°C e N₂: 2,5 l.min⁻¹ (SCM-AL)

6.3.1.2 Atmosfera externa de Nitrogênio (N₂). Vazão: 0,80 l.min⁻¹

Tabela 8 – Resultados ex	perimentais para	a T: 1250°C e	N_2 : 0,8 l.min ⁻¹	(SCM-AL)
--------------------------	------------------	---------------	---------------------------------	----------

t [min]	Conversão observada (χ _{obs})	Constante de Taxa (κ)	Conversão calculada (χ _{calc})
10	0,16	0,0176	0,69
20	0,90	0,1151	0,90
30	0,98	0,1304	0,97
45	0,99	0,1023	0,99
	κ _{médio}	0,1160	
	Desvio Padrão	0,00057	

Nota: Em todos os testes realizados à 1250°C, o ponto à 10 minutos foi considerado. Neste caso em particular, este ponto foi desconsiderado, pois claramente está sob a influência da 'incubação térmica'.

6.3.1.3 Atmosfera externa de Monóxido de Carbono (CO). Vazão: 0,80 I.min⁻¹

t [min]	Conversão observada (χ _{obs})	Constante de Taxa (κ)	Conversão calculada (χ_{calc})
3	0,24	0,0919	0,44
5	0,37	0,0924	0,61
7	0,46	0,0882	0,74
10	0,95	0,2996	0,85
20	0,99	0,2303	0,98
30	0,98	0,1304	0,99
45	0,99	0,1023	0,99
	κ _{médio}	0,1	906
	Desvio Padrão	0,00372	

Tabela 9 – Resultados experimentais para T: 1250°C e CO: 0,8 l.min⁻¹ (SCM-AL)

6.3.1.4 Atmosfera externa de Dióxido de Carbono (CO₂). Vazão: 1,00 I.min⁻¹

Tabela 10 – Resultados experimentais para T: 1250°C e CO₂: 1,00 l.min⁻¹ (SCM-AL)

t [min]	Conversão observada (χ _{obs})	Constante de Taxa (κ)	Conversão calculada (χ_{calc})
3	0,168	0,0615	0,03
5	0,355	0,0877	0,06
7	0,884	0,3079	0,09
10	0,578	0,0864	0,12
20	0,236	0,0135	0,17
30	0,385	0,0162	0,20
45	0,329	0,0089	0,22
	κ _{médio}	0,0	312
	Desvio Padrão	0,00151	

6.3.2.1 Atmosfera externa de Nitrogênio (N₂). Vazão: 2,50 I.min⁻¹

t [min]	Conversão observada (χ _{obs})	Constante de Taxa (κ)	-ln(1-χ) observado	Conversão calculada (χ _{calc})	-ln(1-χ) calculado
3	0,02	0,0055	0,02	0,05	0,06
5	0,03	0,0055	0,03	0,09	0,09
7	0,03	0,0046	0,03	0,12	0,13
10	0,07	0,0069	0,07	0,17	0,19
15	0,19	0,0140	0,21	0,24	0,28
20	0,31	0,0186	0,37	0,31	0,37
30	0,51	0,0234	0,70	0,43	0,56
45	0,56	0,0181	0,81	0,57	0,83
·	κ _{médio}	0,0	185		
	Desvio Padrão	0,00016		j	

Tabela 11 – Resultados ex	perimentais para	a T: 1150°C e N ₂ :	2,5 I.min ⁻¹ (MCM-BR)
---------------------------	------------------	--------------------------------	----------------------------------

Tabela 12 – Resultados experimentais para T: 1300°C e N₂: 2,5 l.min⁻¹ (MCM-BR)

t [min]	Conversão observada (χ _{obs})	Constante de Taxa (κ)	-ln(1-χ) observado	Conversão calculada (χ _{calc})	-ln(1-χ) calculado
3	0,02	0,0084	0,03	0,13	0,14
5	0,02	0,0036	0,02	0,21	0,24
7	0,06	0,0085	0,06	0,28	0,33
10	0,42	0,0541	0,54	0,38	0,47
15	0,68	0,0754	1,13	0,51	0,71
20	0,75	0,0693	1,39	0,61	0,95
30	0,80	0,0543	1,63	0,76	1,42
45	0,95	0,0666	3,00	0,88	2,13
	κ _{médio}	0,0	474		
	Desvio Padrão	0,00	0120		

6.3.3 Efeito da temperatura

Figura 14 – Efeito da temperatura na conversão metálica com o tempo (Briquete SCM-AL, N_2 : 2,50 l.min⁻¹)

Figura 15 – Efeito da temperatura na conversão metálica com o tempo (Briquete MCM-BR, N_2 : 2,50 l.min⁻¹)

Para ambos os briquetes testados (SCM-AL e MCM-BR), incrementos na temperatura de teste aceleram as velocidades de reação, aumentando os graus de conversão obtidos em um mesmo tempo, conforme mostrado nas figuras 14 e 15. Este aumento nos graus de conversão, para maiores temperaturas de teste, confirma as observações de outros pesquisadores que trabalharam com vários tipos de amostras (pelotas, cilindros, misturas), comprovando a influência da temperatura sobre o grau de conversão dos briquetes, independentemente da forma ou dos constituintes das amostras.

Os processos controlados quimicamente apresentam energias de ativação altas, e sendo $\kappa = \kappa_0 \exp(\frac{-E_0}{R.T})$, pequenas variações de temperatura, resultam em grandes alterações da constante de taxa, o que os tornam bastante sensíveis à temperatura. Como os experimentos realizados indicaram um processo de redução muito sensível às variações de temperatura, este comportamento constitui-se numa primeira forte indicação de se ter um controle químico para a reação global de redução dos óxidos de ferro na auto-redução.

6.3.4 Efeito da vazão do gás inerte (N₂)

Figura 16 – Efeito da vazão de gás inerte N_2 , na conversão metálica com o tempo (Briquete SCM-AL, T: 1250°C)

Conforme mostra a figura 16, quanto menor a vazão de N₂, maiores são as conversões metálicas atingidas em tempos iguais. Estas observações confirmam, novamente, os achados de outros pesquisadores ^(29, 30, 41, 45, 52), comprovando o efeito nocivo de aumentos na vazão de gás inerte sobre a auto-redução em ambos tipos de aglomerados de utilização industrial, pelotas ou briquetes.

Esta queda nas taxas de reação para maiores vazões de N_2 se explica pela penetração deste gás na amostra, diluindo os gases reagentes e diminuindo as suas pressões parciais, conseqüentemente afetando negativamente a cinética das reações. Netto e D'Abreu⁽²⁹⁾ comprovaram matematicamente este efeito, utilizando a correlação de Ranz-Marshall, afirmando que "há uma facilidade crescente de transferência de massa, através do filme de gás para a superfície da pelota, com o aumento da vazão de N_2 ", ou seja, quanto maior a vazão de gás inerte, maior a tendência de penetração destes gases nos briquetes.

Outro ponto relevante é que, abaixo das temperaturas necessárias para a ocorrência da reação de Boudouard os briquetes estão saturados em N₂, somente sob um processo de aquecimento. Em temperaturas mais altas, a reação de

Boudouard é iniciada, seguida de uma intensa geração de gás redutor CO, exudando os gases das reações de redução (CO/ CO₂), e arrastando o N₂ existente no interior da pelota. Este fenômeno é maior nos estágios iniciais da auto-redução, onde a reação de Boudouard é mais intensa, devido às condições favoráveis de excesso de carbono disponível e forte fluxo de calor presentes, criando naturalmente um gradiente positivo de pressão entre o interior e o exterior da pelota, dificultando a diluição dos gases reagentes pela contaminação por N₂ externo. Em contra-partida, nos estágios finais da redução, a geração interna de gás é menor, facilitando a penetração de gás inerte no briquete, reduzindo sensivelmente as taxas de reação.

6.3.5 Efeito do tipo de atmosfera externa

Figura 17 – Efeito do tipo de atmosfera externa na conversão metálica com o tempo (Briquete SCM-AL, T: 1250°C)

A figura 17, mostra a influência do tipo de atmosfera externa sobre a autoredução. É possível notar um comportamento análogo entre os experimentos realizados com atmosfera de N₂ e CO, e um comportamento distinto para os experimentos realizados em atmosfera de CO₂. A conclusão imediata de tal constatação é a impossibilidade da aplicação do modelo, representado pela eq. (11), nos experimentos em atmosfera de 100% CO₂, na tentativa de correlacionar os dados experimentais encontrados.

Os briquetes reduzidos em atmosfera de CO_2 , apresentaram elevadas taxas de reação no início dos experimentos, até aproximadamente 7 minutos, quando, entre 7 e 20 minutos, houve uma redução significativa dos valores de conversão metálica, os quais após este período, estabeleceram-se em um patamar. Este comportamento pode ser explicado principalmente, como devido à disponibilidade de carbono no início da redução para a ocorrência intensa da reação de Boudouard, que em atmosfera de CO_2 é fortemente favorecida pelo aumento na concentração dos reagentes (CO_2 e C). Com altas taxas de reação de Boudouard, as conversões metálicas obtidas são altas, e há uma forte geração interna de gás, impedindo a contaminação exagerada do briquete por gás oxidante externo (CO₂). A fração de gás CO₂ que efetivamente consegue penetrar no briquete, imediatamente reage com o carbono, restabelecendo o potencial redutor do processo. A partir dos 10 minutos de reação, com a escassez gradativa da quantidade de carbono disponível, a taxa de reação de Boudouard diminui, seguida pelo abrandamento da geração dos gases, aumentando os níveis de contaminação interna do briquete pelo gás CO₂. Com a maior penetração dos gases CO₂ externos, o potencial redutor do gás, definido pela relação CO/CO₂ no interior dos briquetes muda, alterando as condições de oxi-redução presentes. Este fator acaba por ocasionar a oxidação das fases ferrosas formadas no início do processo, conforme comprovado no trabalho de Rodrigues Filho e D'Abreu⁽⁵³⁾, que a partir de observações micrográficas comprovaram a presença de uma frente de oxidação nas camadas externas das amostras, seguindo um modelo topoquímico tradicional. Outros pesquisadores^(29,54) assumem inclusive, a possibilidade total de reoxidação das amostras, para tempos mais longos.

O resultado dos experimentos realizados em atmosfera de CO e N_2 , também confirmou os achados de outros autores^(29,54), que observaram maiores graus de conversão em atmosfera de CO do que em N_2 . Explica-se este efeito, pelo aumento da reação de redução gás-sólido convencional, devido à penetração do CO externo, aumentando o potencial redutor interno dos briquetes.

Netto e D'Abreu⁽²⁹⁾ em seu trabalho calcularam que, aproximadamente 60% da redução dos óxidos de ferro das suas amostras, ocorreu pelo CO externo. Considerando que os briquetes apresentam aproximadamente metade da porosidade das pelotas utilizadas pelos autores, é de se esperar que no presente trabalho a contribuição da redução gás-sólido pelo CO externo seja menor, embora seu efeito tenha sido evidente e não possa ser desprezado. Deve-se lembrar que esta penetração do CO externo, contribui para o processo até um limite máximo, quando a sua alta pressão parcial começa a retardar a reação de Boudouard, conforme mostrado por vários autores ^(23, 28, 42).

6.3.6 Efeito do material constituinte

Figura 18 – Efeito do tipo de fonte ferrosa na conversão metálica com o tempo (Briquete SCM-AL, T: 1250°C)

O gráfico acima mostra que as conversões metálicas ficaram muito próximas entre os briquetes SCM-AL e MCM-BR à temperatura de 1150°C. Já para o experimento realizado à temperatura de 1300°C, o briquete SCM-AL apresentou maiores graus de conversão, provavelmente pelo fato da magnetita mineral ser menos redutível do que a hematita. Basicamente, esta diferença de reatividade é função do processo de micro-fissuração sofrido pela hematita durante a transformação Fe₂O₃ \rightarrow Fe₃O₄. Portanto, apesar de apresentar um grau de oxidação maior, a metalização do briquete SCM-AL ocorre mais rapidamente do que a do briquete MCM-BR. Assim sendo, em baixas temperaturas, onde a etapa controladora do processo é exercida preponderantemente pela reação de Boudouard, a diferença de superfície específica das magnetitas não se mostrou relevante, conforme pode ser comprovado pelo teste realizado à 1150°C. Em contrapartida em altas temperaturas, quando as velocidades das reações de Boudouard e de redução dos óxidos de ferro se tornam próximas, iniciando um controle misto, a superfície específica dos óxidos passou a ter importância significativa no processo.

Estes experimentos também indicaram que os voláteis tiveram pouca, ou nenhuma, influência na auto-redução, conforme proposto por Fortini e Fruehan⁽⁵⁵⁾, pois apesar de ter maior quantidade de voláteis, o briquete MCM-BR apresentou menores graus de conversão. Acredita-se que os voláteis, apesar de se constituírem parcialmente em agentes redutores que poderiam contribuir para a redução dos óxidos de ferro, são liberados abruptamente à temperaturas relativamente baixas, onde a redução é cineticamente desfavorecida.

De qualquer maneira, mesmo à 1300°C, a diferença entre os graus de conversão encontrados não foram muito grandes.

6.3.7 Gráficos de –In(1-χ) x t

Estes gráficos foram construídos com o objetivo de avaliar os desvios existentes entre as conversões metálicas encontradas e as conversões esperadas em função do uso do modelo.

Nota-se pelas figuras 19 e 20, que o ajuste do modelo utilizado, é melhor nas menores temperaturas de teste, e que começa a desviar nas temperaturas mais altas, em particular nos tempos maiores. Este padrão de resultados era esperado, e é justificado pelo modelo utilizado ser baseado na suposição de um controle químico, onde a reação de Boudouard é a etapa controladora durante todo o processo, que a mesma apresente comportamento de primeira ordem, e que as reações ocorrem à temperatura constante. Como Boudouard é fortemente dependente da temperatura, para baixas temperaturas esta reação é preponderantemente a etapa controladora, atendendo a suposição adotada para a utilização do modelo. No entanto, em altas temperaturas e maiores tempos de reação, a auto-redução tende para um controle misto, também passando a sofrer a influência da reação química de redução dos óxidos de ferro, sendo portanto previsíveis os desvios observados.

A figura 21 mostra uma comparação entre a correlação dos resultados experimentais e os previstos pelo modelo utilizando $\kappa_{médio}$, para os dois briquetes testados, à temperatura de 1150°C e 1300°C, comprovando que para ambos as amostras, existe um bom ajuste à baixas temperaturas e a ocorrência de desvios nas temperaturas mais altas, para maiores tempos de reação. Assim conclui-se que este comportamento tende a ser independente do tipo de material constituinte do briquete.

Figura 19 – Comparação entre os valores de $-ln(1-\chi)$ com o tempo, para o briquete SCM-AL, utilizando $\kappa_{médio}$ e os resultados experimentais

Figura 20 – Comparação entre os valores de $-ln(1-\chi)$ com o tempo, para o briquete MCM-BR, utilizando $\kappa_{médio}$ e os resultados experimentais

Figura 21 – Comparação entre os valores de $-ln(1-\chi)$ com o tempo, para os briquetes SCM-AL e MCM-BR, utilizando $\kappa_{médio}$ e os resultados experimentais

6.3.8 Queda da velocidade de reação nos estágios finais do processo

O comportamento da auto-redução pode se dividir em dois estágios: o primeiro, com altas velocidades de reação, e o segundo, caracterizado por uma queda destas velocidades, mostrando que alguma etapa mais lenta passa a controlar o processo. Este comportamento tem sido discutido por vários pesquisadores, mas ainda sem um consenso definido. Alguns acreditam que a formação de uma densa camada de ferro metálico, circundante aos óxidos remanescentes e impermeável aos gases redutores, seria esta etapa controladora^(22, 29, 30). Neste caso, a redução via intermediário gasosos, somente poderia prosseguir pela difusão iônica de carbono através da camada de ferro metálico⁽²²⁾. Outros fatores, entretanto, também contribuem para a queda da velocidade de reação nos estágios finais do processo:

 A penetração de gás inerte nos briquetes, devido a uma menor geração de gases internamente^(29,30). Esta penetração de gás inerte, reduz o potencial redutor no interior dos aglomerados, afetando a cinética das reações. Todavia ressalta-se que, mesmo nos experimentos em atmosfera de 100% CO, onde não é possível este efeito, ocorre uma redução da velocidade nos estágios finais.

- A formação de compostos de difícil redução, como a fayalita (2FeO.SiO₂) por exemplo, que além de bloquear os poros afetando a difusão gasosa, e cobrir a superfície dos óxidos de ferro difícultando a sua redução, também diminui a atividade química da wustita, exigindo o aumento do potencial redutor necessário para a redução de "FeO" para Fe. Uma consideração importante, feita por Seaton⁽⁴⁵⁾, é que este efeito não afetaria seriamente a velocidade de reação, pois a velocidade da redução é muito maior do que a de formação destes compostos.
- A diminuição da geração de gás redutor CO, pela escassez gradativa de carbono disponível e pelo menor fluxo de calor para os aglomerados. A taxa de gaseificação de carbono (reação de Boudouard), é dependente entre outros fatores, do fluxo de calor necessário para se manter a temperatura, devido à endotermicidade da reação. Logo é de se esperar uma redução nas velocidades de reação, caso a potência do aparato experimental utilizado não atenda a demanda de energia necessária para se manter a temperatura do processo em tempos maiores.
- A redução dos óxidos de ferro ocorre em duas etapas distintas: a redução da hematita e/ou magnetita à wustita (Fe₂O₃ / Fe₃O₄ → "FeO"), seguida da redução da wustita à ferro ("FeO" → Fe). Como a relação CO/CO₂ do gás necessária para proceder a primeira etapa é muito baixa, a quantidade de CO presente é mínima, logo o retardamento da reação de Boudouard, pela presença deste gás, é reduzido. Em contra-partida, na segunda etapa o potencial redutor do gás deve ser alto, e a alta quantidade de gás CO presente acaba ocasionando um retardamento na reação de Boudouard.
- Escassez gradativa dos reagentes ao longo da reação. Em seu trabalho, Rao⁽⁴¹⁾ variou a relação Carbono/Óxido, e obteve perfis tendendo à linearidade quanto maior fosse esta relação.

De qualquer maneira é evidente que, como os fatores acima descritos estariam ocorrendo simultaneamente, suas influências conjuntas é que tendem a responder pelo efeito observado.

6.4 Avaliação dos parâmetros cinéticos

Conforme visto, a teoria cinética da redução dos óxidos de ferro mostra que, se a forma integral da equação que correlaciona a conversão (χ) em função do tempo (t) é conhecida, $-\ln (1-\chi) = \kappa t$, pode-se construir um gráfico de valores de $-\ln(1-\chi)$ em função do tempo (t), para diferentes experimentos realizados isotermicamente. Estes gráficos gerariam retas em que a inclinação, seria igual a constante de taxa (κ) para aquela temperatura (T).

Como a constante de taxa (κ), pode ser colocada na forma da equação de Arrehnius, $\kappa = \kappa_0 \exp(\frac{-E_0}{R.T})$, isso permite a construção do gráfico de ln(κ) versus o inverso da temperatura (1/T), que resulta em uma reta:

$$\ln(\kappa) = \ln(\kappa_0) + (\frac{E_0}{R.T})$$
 eq. (19)

A inclinação desta reta fornece o termo (E_0/R) e o coeficiente linear, definido pela interseção da reta com o eixo das ordenadas, o termo $\ln(\kappa_0)$. Implicitamente se assume que a energia de ativação (E_0) não mude durante o curso da reação⁽⁴⁷⁾.

Neste trabalho, os parâmetros cinéticos foram definidos somente para o briquete SCM-AL, dado a sua importância como matéria-prima para os processos emergentes de produção de ferro primário.

6.4.1 Determinação de $E_0 e \kappa_0$ para o briquete SCM-AL

O valor de κ , para cada temperatura, foi obtido desconsiderando-se os pontos pertencentes aos períodos de 'incubação térmica', conforme mostrados nas

T [°C]	T [K]	1/T [10 ⁻³ K ⁻¹]	κ	$\ln(\kappa)$
1000	1273,15	0.785	0,0029	-5,846
1150	1423,15	0.703	0,0191	-3,958
1200	1473,15	0,679	0,0238	-3,739
1250	1523,15	0,657	0,0475	-3,046
1300	1573,15	0,636	0,0741	-2,602

Tabela 13 – Valores da constante de taxa ($\kappa)$ em função de T

Figura 22 - Gráfico de Arrehnius

Da análise do gráfico acima, extraem-se os seguintes dados:

- Inclinação = E₀/R = -21,402; Coeficiente linear = ln(κ₀) = 10,97
 Logo, os parâmetros cinéticos são determinados:
- Energia de ativação aparente (E₀) = 177,01 kJ/mol
- Fator pré-exponencial (κ_0) = 0,97x10⁻³ s⁻¹

O trecho da curva que aparece pontilhado, corresponde às temperaturas em que os resultados experimentais começam a desviar do modelo adotado, conforme exposto anteriormente.

O valor da energia de ativação aparente encontrada está de acordo com as observações de Seaton⁽⁴⁵⁾ (239 à 125 kJ/mol para as pelotas de hematita e 159 kJ/mol para as pelotas de magnetita), Mourão⁽⁴⁸⁾ (183,5 à 398,5 kJ/mol) e Abraham e Gosh⁽⁴⁰⁾ (140 kJ/mol), mas estão acima das encontradas por Netto e D'Abreu⁽²⁹⁾ (100 à 117 kJ/mol) e Takano et al.⁽⁵⁷⁾ (10,7 à 99,76 kJ/mol), assim como abaixo dos valores encontrados por Rao⁽⁴¹⁾ (300 kJ/mol), Fruehan⁽³⁰⁾ (293 à 334 kJ/mol) e Srinavasan e Lahiri⁽³⁹⁾ (414,5 kJ/mol). Evidentemente que as especificidades de cada um destes trabalhos devem ser levadas em conta, constituindo-se num importante fator para efeito de comparação.

6.4.2 Mecanismo controlador do processo

Em uma análise direta, este trabalho leva a concluir que a auto-redução sofre um controle químico. Esta afirmação se deve as observações da forte dependência da temperatura e a energia de ativação aparente encontrada estar em níveis aceitáveis para processos quimicamente controlados. Neste sentido, Boudouard seria a etapa controladora do processo pois, de acordo com a literatura⁽²⁹⁾, os valores normalmente encontrados para a redução dos óxidos de ferro, quando Boudouard é a etapa controladora, estão na faixa de 170 à 340 kJ/mol e o valor encontrado neste trabalho foi de **177,10 kJ/mol**.

Todavia, esta afirmação deve ser analisada cuidadosamente, de maneira a abordar outras possibilidades. Por exemplo, a presença de intensos gradientes térmicos nos briquetes, os aumentos da velocidade de reação com a temperatura, e a endotermicidade da reação de Boudouard, levam a crer que a auto-redução prossegue a uma taxa que depende da quantidade de energia disponível para a reação de gaseificação do carbono acontecer, ou seja, o processo pode sofrer um controle térmico, caso a taxa de fornecimento de calor para o briquete seja inferior as necessidades da reação. Outra possibilidade que deve ser levada em conta, é que devido a sua alta energia de ativação, a reação de Boudouard é muito sensível à temperatura, logo em altas temperaturas (acima de 1200°C) as velocidades desta reação tendem a se aproximar das reações de redução dos óxidos de ferro, iniciando um controle misto.

As observações experimentais levam a concluir que, para temperaturas até 1200°C, o controle seja químico tendo a reação de Boudouard como a etapa limitadora do processo. Para temperaturas superiores, o mecanismo de controle global da reação passa a ser definido como sendo misto, controlado tanto por Boudouard como pelas reações de redução.